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Abstract— We propose a new policy class, Composable In-
teraction Primitives (CIPs), specialized for learning sustained-
contact manipulation skills like opening a drawer, pulling
a lever, turning a wheel, or shifting gears. CIPs have two
primary design goals: to minimize what must be learned by
exploiting structure present in the world and the robot, and to
support sequential composition by construction, so that learned
skills can be used by a task-level planner. Using an ablation
experiment in four simulated manipulation tasks, we show
that the structure included in CIPs substantially improves the
efficiency of motor skill learning. We then show that CIPs can
be used for plan execution in a zero-shot fashion by sequencing
learned skills. We validate our approach on real robot hardware
by learning and sequencing two manipulation skills.

I. INTRODUCTION

The unique potential of robots lies in their ability to do
physical work in the world — every process that currently
requires a human to meaningfully interact with a physical
object can only be automated by a robot. Despite this
immense potential value, only a tiny fraction of the physical
manipulation tasks that can be automated currently are [1].
There are multiple causes of this failure, but one of the most
acute is that robots are currently not as flexible as humans
in their ability to learn to interact with objects around them.
A factory worker can be trained to basic proficiency in an
unfamiliar task in a day; skillful and reliable execution of rote
manual labor tasks rarely requires more than a few weeks.
Achieving the same level of flexibility, reliability, and skill in
robots requires major advances in their learning capabilities,
so that a robot can be trained to solve a new task, and
subsequently improve its own performance, in reasonable
time and without the support of expert programmers.

There are broadly two families of approaches to au-
tonomously learning manipulation skills. The first combines
end-to-end deep neural networks with reinforcement learning
(RL) [2], [3] to learn “pixel to torque” controllers [4] that
directly map sensor input to motor output. Such approaches
couple RL’s promise of flexibility, generality, and autonomy
with the opportunity to exploit the power of deep networks.
However, they have dauntingly high sample complexity
and face difficulty incorporating principled techniques from
robotics such as forward and inverse kinematics, motion
planning, wrench closure, and feedback control. The sec-
ond family aims to develop carefully designed and highly
structured policy classes [5]–[7] to achieve sample-efficient
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Fig. 1: Composable Interaction Primitives (CIPs) are
a structured policy class that enables safer, sample-efficient
learning of contact-rich manipulation skills by incorporating
model-based priors. Our approach (a) identifies promising
grasp poses for initiating manipulation (b) uses motion
planning to move in free space rather than learning to reach
(c) learns model-free policies for interaction where necessary
(d) enables composition by construction to support task-level
planning.

learning, thereby trading design effort, flexibility, and gener-
ality for sample efficiency. Such approaches have learned an
impressive range of dynamic behaviors [3], [8] in a feasibly
low number of interactions, but are best suited for targeting
a restricted class of motor skills where there is structure to
be exploited and sample efficiency is paramount.

We focus on one such class, sustained contact manipula-
tion skills, where a robot must establish stable contact (in the
form of a grasp) with an object in order to change its state,
and sustain that contact throughout execution. Examples of
such tasks include opening a drawer, pulling a lever, turning a
doorknob, opening a door, turning a wheel, or shifting gears.
We introduce a new policy class, Composable Interaction
Primitives (or CIPs), that draws from the best of both motor
skill learning approaches: it exploits the structure present in
sustained contact tasks, resulting in a policy class that is
structured, safe, and highly parameter- (and therefore data-)
efficient; and then applies deep networks to the components
where learning from high-dimensional input is unavoidable.
Additionally, CIPs are sequentially composable by construc-
tion, so that learned skills can be sequenced to solve new
tasks in an order determined at runtime by a task-level
planner. Using an ablation experiment in four simulated
manipulation tasks, we experimentally explore the role of



structure in manipulation skill learning, and show each of
the components of CIPs substantially improves learning
efficiency and safety. We then demonstrate the use of CIPs
to efficiently learn, and subsequently sequence on-demand,
sustained-contact manipulation skills on real robot hardware.

II. BACKGROUND AND RELATED WORK

Motor skills are typically learned using RL [2], where
tasks are formalized as a Markov Decision Process M =
(S,A, R, T, γ). The robot’s goal is to learn a policy π : S →
A mapping a state to the action it should execute in that state,
such that it maximizes the discounted sum of expected future
rewards (or return).

In many cases, the target motor skill is not the entirety of
the robot’s task, but should instead be used as an executable
subroutine as part of the solution. Such skills are often
modeled using the options framework [9], where an option
o is defined by a tuple (Io, πo, βo), where Io ⊆ S is
the initiation set, the set of states from which the robot
may choose to execute the option; βo : S → [0, 1] is
the termination condition, giving the probability that option
execution ceases in state s; and πo is the option policy.
The robot can choose to execute o if the current state is
inside Io, whereupon execution proceeds according to πo and
halts at each encountered state according to βo. Modeling
motor skills as options naturally supports reasoning about
sequential compositionality — option o2 can be executed
after option o1 if the state that o1 leaves the robot in lies
within o2’s initiation set [10]–[13]. Hierarchical RL studies
the discovery and composition of such options [14]–[16].

A great deal of recent work has examined the setting
where a robot learns to map its sensor input directly to
motor torques via deep reinforcement learning [4], [17].
These methods offer flexibility, generality, and autonomy
by exploiting recent advances in learning deep networks.
However, that generality has a cost: such methods rely on
access to massive amounts of compute and data and therefore
typically require additional methods that implicitly encode
design insight into the data set [18]–[20], collect experience
from multiple robots in parallel [21], [22], or include hu-
man demonstration [23]–[25]. Additionally, these approaches
make it difficult to incorporate the structural knowledge that
robotics as a field has developed around techniques like
forward and inverse kinematics, motion planning, wrench
closure, safety, and feedback control.

An alternative approach is to carefully design and struc-
ture a policy class to guarantee desirable properties (e.g.,
stability, joint and torque limits, and safety constraints) while
exploiting the properties of a broad class of target tasks
to support sample-efficient learning. The most historically
important such policy class is Dynamic Movement Primitives,
or DMPs [5], [26], which have been used to learn an
impressive range of dynamic behaviors [3], [8] in tens or
low hundreds of interactions, though they must typically
be bootstrapped by an expert demonstration trajectory [24],
[27]. The key assumption underlying DMPs is that dynamic

motions can be represented largely as a trajectory shape—
represented separately for each joint, as a linear combination
of learned weights with basis functions over time—coupled
with a second-order dynamical system that stably controls
the robot towards the shape trajectory. Although DMPs
have seen wide usage [1], they have largely not been inte-
grated with high-dimensional, multi-modal data for contact-
rich tasks [28]. Other important policy classes overcome
the standard shortcomings of DMPs, such as Probabilistic
Movement Primitives [29], Conditional Movement Primitives
[30]–[32], and Riemannian Motion Policies (RMPs) [6], [7],
[33], [34]. These approaches help account for variability
across demonstrations, high-dimensional task parameters,
and different task spaces but still fail to robustly handle
the contact dynamics present in dexterous manipulation [28].
Other approaches incorporate robotics primitives as actions
directly in RL [35] or employ motion generation to execute
policy actions [36], [37].

A burgeoning area of research is incorporating learned
motor skills into task and motion planning (TAMP) solvers
[38]–[41]. Cheng and Xu [42] propose a guided skill learning
process, but assume existing TAMP infrastructure and heuris-
tically resolve the grasping problem. Silver et al. [43] learn
skills in a TAMP framework by segmenting demonstrations
consisting of sequences of skills (ala [44]), but rely on se-
quential demonstrations and do not consider motion planning
and other structure like grasping and safety constraints during
learning. Our work shows that this structure is critical for
efficient skill learning, and does not require demonstrations.

III. COMPOSABLE INTERACTION PRIMITIVES

The success of DMPs suggests that one approach to
achieving successful motor skill learning is to match a
restricted but important class of motor skills with a represen-
tation designed to exploit its structure [5], [26]. We address
learning motor skills in the sustained contact regime: skills
where a robot must establish and maintain contact with an
object while exerting force on that object to successfully
manipulate it, such as when a human opens a door, pulls
a lever, wipes a surface, or shifts gears. Such motor skills
are common, complex, and important: much of the work
that a robot with a gripper will be tasked with performing
in the world—all except pick-and-place and instantaneous
contact skills like pushing a button—will require sustained
interaction with an unmodeled (or partially modeled) object.
They are also highly structured (e.g., including making and
breaking contact via grasping), necessitate complex safety
constraints such as joint position and torque limits, and
demand precise control driven by policies that must be
learned from noisy and high-dimensional tactile and force
feedback. Finally, they should be designed to support com-
position: suitable for sequential execution to address new
tasks in an order determined at runtime, a capability that is
unlikely to occur by chance and can only be achieved through
design. All these reasons make sustained-contact motor skills
excellent candidates for a specialized motor policy class.



We identify four important properties present in sustained-
contact motor skills. First, skill execution can be decomposed
into phases: the robot first moves through free-space to
reach a pre-grasp pose, then achieves a stable grasp, then
manipulates the object, then releases its grasp, and finally
controls its gripper back into free-space. Second, most phases
involve little or no per-task learning: motion through free-
space and to achieve or release a grasp can be computed
using motion planning and feedback control, respectively;
the choice of where to grasp the object is a supervised
learning task that can be resolved (or at least bootstrapped)
using a generic grasp detector [45]. Only the sustained-
contact controller itself need be largely learned on a per-
task basis, though it could be bootstrapped using learning
from demonstration [24] or kinematic motion planning [46].
Third, the sustained-contact controller itself naturally sug-
gests structure: the controller must be a function of force-
and tactile-feedback, learned using reinforcement learning;
the goal of learning should be to reach a task-specific goal
(e.g., opening a door, or switching a light on) while avoiding
task-general failure modes (like losing contact with the object
or becoming stuck); and during learning the policy should be
able to explore while being position- and torque-constrained
so as to never damage the robot or the object. Here, task-
specific structures are components that are either learned
or hand-specified for a specific object manipulation skill,
whereas task-general structures are components that may be
specific to the robot but can be reused across different object
manipulation skills. Finally, a natural means of composition
is through free-space motion planning: motor skills can
be sequenced by simply motion planning from one skill’s
release point to another skill’s grasp point.

We therefore propose Composable Interaction Primitives
(CIPs), a new policy class structured by these insights and
aimed at learning composable sustained-contact manipula-
tion skills in tens, rather thousands, of real-world interac-
tions. CIPs are structured as a tuple, where components
subscripted by c are specific to the task, and the remainder
are specific to the robot but generic across tasks:

C = (πc, σ, βc, Ic, h, t,Γ, B) ,where:

• πc : ϕ → τ is a motor control policy that maps tactile
sensor signals, proprioceptive data, and object state
information to joint torques τ and gripper commands
τg , with parameters ψ.

• Policy πc is constrained by σ, a safety envelope specific
to the robot but not to the task. Execution is constrained
to obey σ so that the agent does not damage the object
it is interacting with or itself.

• βc : ϕ→ {0, 1} is a task-specific success indicator that
maps the robot’s observations ϕ to a boolean indicating
whether the interaction primitive has achieved its goal.

• B is a task-general classifier indicating interaction fail-
ure (e.g., that contact has been lost, the interaction has
timed out, or execution cannot continue without a safety
constraint being violated). Once initiated, πc continues
execution until either βc indicates success or B indicates

failure. The resulting signal informs a policy search
algorithm to optimize πc.

• Ic : v, g, ψg → [0, 1] is the grasp initiation set,
a probabilistic classifier conditioned on visual data v
that maps end-effector poses g and grasp parameters
ψg to the probability with which executing πc from
grasp g terminates in βc (success) as opposed to B
(failure). During learning, selecting promising grasps is
formulated as a bandit problem.

• h and t are the head and the tail, motion planners
that control the robot through free space to achieve a
grasp generated by Ic, and extract it from contact back
into free space—or into the head of another skill—
after termination. These serve to establish and break
contact, and to sequence skills: the tail of one skill
simply becomes the head of another.

• Γ : g, ψg → τg is a grasp controller parameterized by
grasp pose g, sampled from the initiation set, and grasp
parameters ψg (e.g. grasp type, force), and outputting
motor commands for the gripper τg .

For most tasks, we envision that all the skill components
are given or designed except πc and Ic, which leads to a
problem of jointly learning a policy and affordance model
for functional grasping. The CIP model structures the motor
skill learning problem so that: only motor control involving
contact with the object is learned, and free-space motion
is generated using a planner; interaction with an object is
always safe; and motion planning is used for the remainder
of motor control, especially to stitch motor skills together.
At the same time, the components that must be learned
offer natural opportunities for incorporating powerful deep
network methods to learn rich sensorimotor policies. The
result will be small, isolated pockets of motor skill learning
connected by much longer trajectories generated by a motion
planner. Note that the CIP model does not assume access to
a simulator or dynamics model of the environment.

A. Instantiating CIPs

One benefit of the CIP framework is that its different
components may be chosen to match the robot hardware it is
being instantiated on. We now detail our specific choices of
component instantiations used in the experiments (described
in Section IV) as an illustrative example.

Motor control policy πc: Sensor input from the touch
sensors on the robot’s grippers, the joint and Cartesian state
of the robot, and object joint state are fed into a neural
network policy. For the action space, we chose to have the
robot command the end-effector in Cartesian space while
remaining compliant to promote sample-efficiency and safety
during sustained contact. We therefore selected the Variable
Impedance Control in End-Effector Space [47] scheme as
our action space. Motor policy πc maps sensor readings ϕ
to a desired delta end-effector position ∆pos = (pd − p) and
rotation ∆ori = Rd ⊖ R, as well as commanded stiffness
terms kpp ∈ R3×3 and kRp ∈ R3×3 for position and rotation
respectively. These terms are then used to directly map to



(a) Open door task (b) Slide knob task (c) Open drawer task (d) Flip lever task

Fig. 2: Simulation Task Environments

joint torques τ via:

τ = Jp[Λp[k
p
p(pd − p)− kpdv]] (1)

+ JR[ΛR[k
R
p (Rd ⊖R)− kRd ω]], (2)

where Λp and ΛR are the position and orientation com-
ponents of the inertia matrix Λ ∈ R6×6 in the end-
effector frame, Jp and JR are the position and orientation
components of the end-effector Jacobian J , and Rd ⊖ R
corresponds to subtraction in SO(3). Linear and angular
velocity are denoted by v and ω, respectively; kpd ∈ R3×3

and kRd ∈ R3×3 are the damping matrices for position and
rotation, set such that the system is critically damped. The
resulting action space therefore consists of 13 dimensions:
six for end-effector pose, six parameterizing the diagonal of
the stiffness matrices, and one for the state of the parallel-jaw
gripper.

Safety envelope σ: We limit the maximum value of
stiffness parameters kpp and kRp , so that the robot remains
compliant and does not generate high torque values when
it contacts the object. In addition, the torques are clipped if
they exceed the allowed range. We use a two-fold strategy to
prevent joint limit violations, with two threshold parameters,
σ1 and σ2 (σ1 > σ2), that check how close the robot joints
are to its limits. If a joint position θi exceeds its threshold
σ1, we switch to a null-space controller [48] that attempts
to move θi away from its limit without changing the end-
effector pose. If the robot nonetheless exceeds σ2 at joint
index i (e.g. due to a high enough initial velocity to overcome
the null-space controller), the controller generates a torque
in the opposite direction for θi until it returns to a safe
configuration.

Task-specific success indicator βc: These were designed
by hand for each task, and return true when the object’s joint
states are above a threshold position. In principle, they could
be learned from data.

Task-general failure classifier B: In our case, B simply
served as a joint limit safety check: if the robot is within
5 degrees of its joint limits, the classifier returns true and
ends the learning episode. Episodes are also terminated if
the agent loses contact with the object for several timesteps.

Grasp initiation set Ic: In each case, the visual data v is
represented as a point cloud of the scene, which is segmented
to only include the part of the object that the robot should
manipulate. An existing task-general grasp generator GPG
[49] is used to sample a set of grasp poses G based on the
normals calculated from the point cloud. Each grasp g ∈ G is
then checked for reachability and collision. Grasps g which
pass these checks are added to a list of acceptable grasp
poses that define the domain of Ic.

To sample a grasp pose g ∈ Ic for the head h during
learning, we cast grasp sampling as a bandit problem that
is solved with Upper Confidence Bounds (UCB) [50] where
Q-values are task success rates. We therefore treat learning
Ic and sampling grasp poses as an active learning problem,
and use UCB since it appropriately balances exploration and
exploitation.

Once a grasp pose g is sampled, we obtain a suitable joint
configuration θ by optimizing manipulability. A manipula-
bility score is computed for a joint configuration θ as the
product of two values: 1) the manipulability index introduced
by [51] that analyses the volume of the manipulability
ellipsoid: w =

√
det(JJT ) where J is the Jacobian for a

particular joint configuration θ, and 2) a penalization term
introduced by [52] based on the distance to the upper and
lower joint limits for a particular joint configuration θ. These
two metrics capture for a joint configuration θ how close the
robot’s end-effector is to a singularity and how close the
robot’s joints are to joint limits, respectively.

During learning, at the start of each episode, the manipu-
lator is reset to the sampled joint configuration. The policy
is executed and updated normally. The success or failure
of the rollout is recorded and used to update the initiation
set classifier using UCB. During task planning (sequencing
skills after the skills and classifiers are trained) the highest
probability grasp is selected for execution.
Motion planners h and t: These were instantiated for
each domain using the IKFlow inverse kinematics solver [53]
and MoveIt! [54] to move the robot to the grasp pose sampled
from the grasp initiation set Ic.
Grasp Controller Γ: The implementation of the grasping
controller depends heavily on the morphology of the gripper.
For simple parallel jaw grippers the parameterization is
simply the opening state of the gripper. For more complex



(a) Success rates for simulated tasks (Door, Slide, Drawer, Lever).

(b) Joint limit violation rates for simulated tasks (Door, Slide, Drawer, Lever).

Fig. 3: Task success rates and joint limit violation rates vs. the number of training episodes. The shaded region around the
average shows the standard error over 10 seeds.

hands, e.g. with three or more fingers, the grasping controller
may select among power and pinch grasps [55].

IV. EXPERIMENTS

We evaluate the CIP framework in simulation using RO-
BOSUITE [56]. We conducted experiments on four different
articulated object tasks: opening a door, opening a drawer,
sliding a knob, and lifting a lever. The position and orienta-
tion of the object in each episode is randomized over a small
range as in the original benchmark.

The observations consist of the state of the object, position
and velocities of the robot’s joints, end-effector pose, and
tactile readings from the force sensors at the robot’s gripper.
We trained policies using TD3 [57]. The reward functions
are dense as a function of progress toward the object goal
joint state, which leverages potential-based reward shaping
[58] to ensure the optimal policy is not changed compared
to the sparse reward setting based on success.

We consider two evaluation metrics: 1) Task Success
Rate, and 2) Joint Limit Violation Rate, a proxy measure
for how safe the policy is. To analyze how each of the
structures of CIP impact these metrics, we run ablations that
incrementally include structure described in Section III-A:

1) E2E: This setting is an end-to-end baseline that incorpo-
rates none of the CIP structure. The robot begins in a home
pose with no contact to the object, and must learn a complete
policy for moving to the object and manipulating it.

2) Head: This baseline incorporates the head h structure of
the CIP, but no initiation set learning—the robot samples
grasp poses randomly and uses naive IK to reach them.
3) Safety: This baseline extends Head to additionally incor-
porate the safety envelope.
4) Manipulability Value (MV): This baseline extends the
Safety setting, and additionally incorporates the manipulabil-
ity value into the sampling approach for Ic. After sampling
a random grasp, we sample a set of inverse kinematics
solutions and select the one with the highest manipulability
value.
5) CIP: Incorporates all the structure of the CIP; extends the
MV approach to additionally perform active learning with
UCB over grasp poses.
6) CIP+BC: Ten demonstrations from an expert policy are
provided to the CIP learner and incorporated into policy
search using the behavior cloning loss and Q-Filtering [25].
7) E2E+BC: Ten demonstrations from an expert policy are
provided to the E2E learner.

Results: The results for all our experiments can be found
in Figure 3, where we show the best-to-date performance
for both metrics across all the tasks. Across all the tasks,
the E2E baseline is unable to learn a meaningful policy,
and has many joint violation rates throughout learning. This
is expected as exploration is extremely challenging in the
absence of a strong reward signal for reaching the object
and making contact. We also see that once the head of the
CIP is incorporated (Head), the agent is more performant,



Fig. 4: Two learned CIPs executed in succession on robot hardware.

but still encounters many joint state violations throughout the
learning process. The Safety baseline is able to achieve a task
success rate on par with Head, but significantly reduces the
joint state violation rates during learning. The MV baseline
has improved task success over the Head baseline, which
demonstrates the usefulness of incorporating the manipula-
bility value when selecting joint configurations for sustained-
contact manipulation tasks, but still has trouble learning an
effective policy for the Lever and Drawer task in a small
number of training episodes. Once the full structure of the
CIP is incorporated (CIP), the agent is able to rapidly learn
a policy with a high success rate (at least an average of 80%)
within hundreds of training episodes. When demonstrations
are available (CIP+BC) we see rapid, safe learning within
tens of episodes. Note that CIP+BC outperforms the end-to-
end agent with demonstrations (E2E+BC). We hypothesize
that the Drawer task is challenging due to the relatively
low manipulability of grasps on the object. These results
demonstrate that each structural component of the CIP is
useful for promoting safe and efficient learning across a
diverse set of sustained-contact manipulation tasks.

V. SKILL COMPOSITION DEMONSTRATION ON
HARDWARE

One of the advantages of the CIP structure is it enables
zero-shot composition by construction. The motion planning
performed via the head h and tail t, together with learned
initiation sets Ic, enable a robot to learn sustained-contact
manipulation skills in isolation, and then sequentially execute
the skills with no additional learning. We validate our ap-
proach by learning and sequencing two manipulation skills—
opening a cabinet door and pulling a drawer open—on a
KUKA LBR iiwa7 with a Schunk Dexterous Hand 3-fingered
gripper as shown in Figure 4. The sequence is determined a
priori by an expert but could be computed using off-the-shelf
task planning methods. For each skill, we produce a set of
possible pinch grasps using a grasp pose generator [49] and
filtering for collision, IK feasibility, and successful contact.

Given a grasp proposed by the UCB sampler, we select an
IK solution with high manipulability index as described in
Section III-A. The observation space consists of the Cartesian
position and orientation of the robot end effector, tactile
readings from each of 6 touch sensors on the gripper’s
fingers, and the state of the door or drawer. The actions
consist of displacements in position and are executed using
the iiwa’s Cartesian Impedance control mode. A shaped
reward is provided as in the simulation experiments as a
function of object state tracked using ar track alvar.
We provide 3-5 demonstrations for each skill. Please refer
to the video supplementary material for further detail. As
shown in Figure 4, the robot is able to successfully learn
each skill, and to compose the two skills in sequence.

VI. CONCLUSION

We propose a new policy class for sustained-contact ma-
nipulation skills: Composable Interaction Primitives (CIPs).
CIPs are designed to exploit readily-accessible structure in
the world and structure in the robot to enable sample-
efficient and safe policy learning, and be easily leveraged
by high-level planners due to their sequential composability
via motion planning. Future work will investigate efficient
methods to learn effect models to autonomously construct a
symbolic vocabulary to support integrating CIPs with a high-
level task planner, and learning CIPs from high-dimensional
visual observations.
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